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Abstract. Computations of the frequencies of longitudinal and transverse phonon modes in 
a two-component metallic glass (Mg,,,Zn3,,) based on the pseudopotential approach used for 
the calculation of interatomic pair potential have been presented. The theory employed for 
these calculations is a self-consistent phonon theory as developed by Takeno and Goda for 
amorphous solids. The computed results are compared with molecular dynamics and neutron 
inelastic scattering experiments. It appears that the short-wavelength collective excitations 
detected in this glass arise from longitudinal phonon excitations and probably not from a 
diffuse Umklapp scattering from transverse acoustic waves. 

1. Introduction 

Metallic glasses are solids which have electronic properties normally associated with 
metals but atomic arrangements which are not spatially periodic. Non-crystalline and 
amorphous are equivalent terms used to describe the atomic-scale structure of such 
materials. Until recently, metallic glasses which are stable at room temperature were 
composed of several elements, at least one of which was a transition metal. Now, 
however, it has become possible to make stable metallic glasses with only two 
components, both of which are simple metals (e.g. Mg-Zn, Ca-Mg and Ca-AI). It is 
obvious that such substances should prove to be easier and more convenient systems for 
theoretical investigation. 

Although we have sufficient understanding of the properties of collective density 
waves in amorphous solids, much less attention has been given to the application of 
collective motion in the study of dynamical structure and phonon dispersion in binary 
and multicomponent metallic glasses. Partial wavenumber-dependent spectral functions 
have been computed [l] for Ca-Mg, Mg-Zn and Ca-Zn alloys, but there are very few 
systematic investigations [ 2 , 5 ]  of dynamical concentration fluctuation in metallic glasses 
or glass-forming alloys. 

Because of the presence of only two components, the model structure of binary 
metallic glass remains relatively simple and, furthermore, using pseudopotential theory 
it is possible to calculate the interatomic potentials between simple metals to a high 
degree of accuracy. 

Inthe present paper, the interatomic potentials q M g - M g ( r ) ,  qMg-Zn(r)  and qzn-zn(r)for 
Mg,,Zn,O have been calculated within the framework of the pseudopotential approach. 
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Using the potentials thus obtained the frequencies of longitudinal and transverse phonon 
modes are computed employing the theory of amorphous solids [4]. The computed 
results are compared with the molecular dynamics results and neutron inelastic scattering 
experiments. 

2. Theory 

The form of the effective ion-ion pair potential in a single-component fluid (metallic 
fluid), employing the empty-core model potential of Ashcroft [5] and the screening 
function of Hubbard and Sham [6], is given as 

where Z, rc and & ( e )  are the valency, core radius and static dielectric function, respect- 
ively. 

Knowing the pair potential for a single component as given in equation (l), the 
mean-effective-density-dependent interatomic potential in the case of a two-component 
metallic glass of the type A ,  -xB, can be written as 

9 efi(r> = C i  9 AA ( r )  + 2CA C B  9 A B  (11 + CZ, 9 BB ( r )  (2) 

where CA and CB are the concentration fractions of the A and B components, respect- 
ively, and are given as 

CA = (l - q V A / [ ( l  - q V A  + xvBl 

V ,  and VB are the molar volumes of the A and B components, respectively. In equation 
( 2 ) ,  q A A ( r ) ,  q B B ( r )  and qAB(r) are the partial pair potentials for A-A, B-B and A-B, 
respectively, in the A1-,B, metallic glass. Using equation (l), one can write 

1 
cos2(Qrt)  (-- 1) 

n & A A ( Q )  
9*AA(r) = y (3) 

where 

= 1 - [(4ne2/Q2)xA(Q>l/[l + ( ~ J ~ ~ ’ / Q ~ > X A ( Q ) ~ A  (Q)l 

in which xA(Q) takes into account the coulombic interaction between the electrons and 
is expressed as 

x,(Q) = - (mK$/n2fiz){a + [(4K;’* - Q2)/8K$Q] ln/(2K$ + Q)/(2K$ - Q)l}. 

Here, GA(Q), called the local field function, including the exchange and correlation 
energies among the electrons, is written in the form GA(Q) = Q2/[2(Q2 + vKe2)] with 
v = 2/(1 + 0.153/nK$).  The expression for the partial pair potential q B B ( r )  between 
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B types of atom is similarly written by simply replacing the subscripts A and superscripts 
A by B in equation (3). Furthermore, qAB(r) is expressed as 

The value of r t B  is obtained in terms of r t  and r: using the relation 

r t B  = (r$ + r ; ) / 2 .  

Furthermore, the Fermi wavenumber KF for the A-B component is determined 
using the following expression from the free-electron theory: 

where ZAB is the mean valency of the metallic glass and pAB is the mean number density 
of A-B pairs in the metallic glass AI-,B,. Quite often, simple extrapolation of the 
number of valence electrons from the values for the pure component can give KF for 
A-B pairs but these values lead to the totally inconsistent results of the experimentally 
observed temperature coefficient of resistivity. Moreover, it should be remembered 
that, while S(Q) can be experimentally determined for an amorphous material, at 
present there is no simple way to determine KF directly. The effective pair potential 
obtained above has been used to study the dynamical structure and hence the properties 
of a binary metallic glass. The phonon eigenfrequencies are physically more meaningful 
quantities with which we study the anharmonicity of the glass under consideration. The 
expression for the longitudinal and transverse phonon eigenfrequencies for the virtual 
atoms contain many-body correlation functions and are given as 

sin( Qr) 2 cos( Qr) 2 sin( Qr) 
( Qr) 

+ 

and 

where M is the effective mass of the atom and peff is the effective number density of the 
glass. 

3. Results and discussion 

Partial pair potentials calculated for Mg-Mg, Zn-Zn and Mg-Zn components are 
employed using equation (2) in the computation of the effective pair potential for 
Mg,oZn30 glass. The partial pair potentials and effective pair potential of the glass are 
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Figure 2. The longitudinal and transverse phonon dispersion relations for metallic glass 
Mg,,,Zn3, (-), compared with the experimental data from Suck et al [lo] (neutron 
inelastic scattering) ($),  the model calculation of Tomanek [9] (- . -) and the molecular 
dynamics of vofl Heimendahl[8] (- - -). 

shown in figure 1. qer t ( r )  lies in between qMe-Mg(r) and qZn-Zn(r) and shows oscillations 
of the repulsive potential in the larger-r region. In the large-r region, it seems that, in 
this glass, coulombic repulsion dominates over the oscillations due to ion-electron-ion 
interactions and hence the calculated pair potential converges, for r +  x, towards a 
finite value instead of zero. The phonon eigenfrequencies for longitudinal and transverse 
phonon modes are calculated using equations ( 5 )  and (6) and are shown in figure 2. The 
effective pair correlation function geff(r) is taken from the molecular dynamics plus 
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potential energy mapping results of Hafner and Jaswal [7]. The molecular dynamics 
results of von Heimendahl [SI, the results of the niodel calculation of Tomanek [9] and 
the neutron inelastic scattering experiment results of Suck er a1 [lo] are also shown in 
the figure. It can be noted from figure 2 that oscillations are dominant in the longitudinal 
phonon mode, whereas the transverse phonon mode does not show an oscillation of 
large amplitude beyond the first maximum of the longitudinal mode; this maximum lies 
at Q = Qp/2 where Qpis the wavevector transfer at which the structure factor of Mg,,Zn,, 
shows its first peak. In the high-wavevector-transfer region, damping of phonons dom- 
inates the transverse mode, indicating the fluid characteristics of the glass because of the 
softening of the structure of the glass. It is also observed from the longitudinal phonon 
mode that the spectral response is not sharp at larger Q-values. The results beyond about 
1.5 A-' are almost meaningless as the spectral response measured by neutron inelastic 
scattering is broad and approaches the density of states at large Q. 

In the long-wavelength limit, however, the frequencies of the longitudinal and 
transverse modes are proportional to the wavevectors and obey the relationships 

W I  = C,Q mi = CiQ 

where C, and C, are the longitudinal and transverse velocities of sound in this glass. The 
values of C, and C, as calculated from the elastic part of the phonon dispersion curves, 
i.e. C, = 4.7 x lo5 cms-landC, = 2.6 X 105cms-I,areclosertothoseobtainedthrough 
the Brillouin scattering experimental value [11], namely C, = 4.3 X lo5 cm 5-l and C, = 
2.3 x lo5 cm s-l, than to the values obtained through von Heimendahl's dispersion 
relation, where C ,  = 5.1 X 10' cm s-l and C, = 2.5 X 10' cm s-'. Furthermore, using 
these values of the longitudinal and transverse velocities of sound, the Debye tem- 
perature OD has been calculated in Mg,,Zn3, glass following Hafner [l]. This OD value 
of 305.21 K is in excellent agreement with the value (OD = 307.93 K) computed using 
the Grimvall[12] formula for the Debye temperature of an alloy: 

I/@$ = P A / @ $ 4  + p B / @ L g  

wherep, andp, are the atomic concentrations (in fact just the probabilities that the site 
is occupied) and OD, and OD, are the Debye temperatures [13] of the pure components 
of the metals in the alloy. Also, the isothermal bulk modulus BT of an isotropic solid is 
given by BT = p( C: - 4 Cf), where p is the density of the isotropic solid. For amorphous 
Mg,,Zn,", we get B ,  = 3.559 X 10" dyn cm-'. This is only 0.8% lower than the BTvalue 
averaged over the crystalline metals; BT = 3.58 x 10" dyn cm-* (the theoretical bulk 
moduli for the pure metals are BT = 3.4 X 10" dyn cm-* for Mg and BT = 4.0 X 10" 
dyn cm-* for Zn). This value of BT for Zn has been calculated from the experimental 
data on isothermal compressibility [ 141, Both results suggest that the longitudinal elastic 
modes are somewhat softer in the glassy phase. 

Recently Suck et a1 [ 101 have measured the dispersion of short-wavelength collective 
density fluctuations in this metallic glass (Mg,,Zn,,) for momentum transfer near the 
first maximum of the static structure factor (Q ,  = 2.61 A-') using inelastic neutron 
scattering. From the calculated dynamical structure factors, the dispersion of longi- 
tudinal excitations could be determined for wavevectors ranging from 0.3 to 2.4 A-'. 

Transverse excitations are sufficiently well defined only for momentum transfer up 
to 1.2 A-' in von Heimendahl's dispersion relations. However, in the present work, 
the transverse phonon frequencies have been computed up to higher Q-values. The 
computed transverse branch neither shows oscillations at higher Q nor provides any 
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minimum and is monotonic. As the neutron couples directly only to the longitudinal 
modes, the observed collective excitations in amorphous solids have to be compared 
with the predicted dispersion for longitudinal modes. Both theory and experiment yield 
a decreasing dispersion curve with increasing momentum transfer in the region between 
Qp/2 and Qp (Q, is the wavevector of the first peak in the static structure factor). The 
observed frequencies are a factor of about two less than the calculated dispersion. The 
dispersion curves obtained from the model calculation of Tomanek [9], also displayed 
in figure 2, lie below von Heimendahl’s dispersion results of longitudinal excitations and 
are close to the results obtained from the present computations but are much higher 
than the experimental results. The quantitative difference between the present cal- 
culation and the experimental situation, in spite of good qualitative agreement, can be 
attributed to 

(i) the sampling conditions of the experiments, 
(ii) the short supply of data in the long-wavelength region and 
(iii) the low effectiveness of the dielectric screening function used for the calculation 

of the effective pair potential. 

Thus it could be concluded that the self-consistent phonon theory of Takeno and 
Goda [4], used in the calculations of the longitudinal and transverse phonon frequencies, 
in amorphous solids can explain the qualitative behaviour of the dispersion law for 
propagating collective excitations in Mg,oZn3, glass. It appears from the present analysis 
that in glass also, like liquid metals, the short-wavelength collective excitations arise 
from the longitudinal phonon modes and therefore could be compared with the results 
of the inelastic scattering of slow neutrons. 
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